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ABSTRACT. The analytic solution for the unsteady magnetohydrodynamic (MHD) flow of Maxwell fluid in
long porous rectangular cross-section is studied. Two flow problems are considered: (i) Flow in an
oscillating rectangular duct and (ii) Flow in a duct induced by an oscillating pressure gradient. The
problems are solved by applying the double finite Fourier sine and Laplace transforms by taking into
account the modified Darcy's law. The effects of magnetic parameter and porosity of medium on the
velocity profile, the corresponding tangential tensions and volume flow rate for both the problems, and the

influence of various material parameters on the velocity profile for

graphically and discussed.

the second problem are presented
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1. INTRODUCTION

The research of non-Newtonian fluids plays an important
role in many engineering and industrial applications due to
their behavior. In order to describe the behavior of non-
Newtonian fluids, numerous constitutive models have been
proposed. A rate type model, which is widely used is due to
Maxwell. W. Akhtar et al. [1] discussed the unsteady flow of
a Maxwell fluid induced by a constantly accelerating plate
between two side walls perpendicular to the plate and
obtained exact solutions for the velocity field and tangential
stresses by means of the Fourier sine transforms. T. Hayat et
al. [2]studied the unsteady flow of a Maxwell fluid caused
by a suddenly moved plane wall between two side walls
perpendicular to the plane and obtained closed form solution
employing the Fourier sine transforms. M.E. Erdogan [3]
discussed the unsteady flow of a viscous fluid due to the
cosine and sine oscillations of a plane wall and L. Zheng et
al. [4] developed exact solutions for generalized Maxwell
fluid flow due to oscillatory and constantly accelerating
plate. C.K. Chen et al. [5] and W. Akhtar and M. Nazar [6]
obtained exact solutions for the flows in a circular duct for
Maxwell fluids and generalized Maxwell fluids respectively.
H.T. Qi et al. [7] obtained solutions corresponding to the
unsteady flows of fractional Maxwell fluid in a duct of
rectangular cross-section analytically and M. Nazar et al. [8]
extended the problem for flow through oscillating
rectangular duct.

The study of flow through porous media is of fundamental
importance in geo mechanics, biomechanics and industry.
Flows through porous media include flow of water through
rocks, regulation of skin and filtration of fluids. Porous
passages with rectangular cross sections are useful for
cooling of engineering systems. Following Henry,
mathematical descriptions of liquid flow in porous media are
based on Darcy's law. A.K. Johri et al. [9] discussed
oscillating flow of a viscous liquid in a porous rectangular
cross-section under the influence of periodic pressure
gradient. They derived expressions for velocity distribution,
volume flow rate and drag in the duct. T.G. Prasuna et al.
[10] examined unsteady flow of a visco elastic fluid through
a porous media between two impermeable parallel plates

employing Laplace transformation technique and computed
expressions for the flow rate and shear stress on the walls.
The presence of an external magnetic field that effects the
motion of non-Newtonian fluids, for example blood, is very
important. G. Ramamurty and B. Shankar [11] discussed the
effect of Magnetohydrodynamic on blood flow through a
porous channel. B. Muck [12] investigated the
magnetohydrodynamic liquid metal flow around a square
cylinder placed in a rectangular duct. S. Smolentsev [13]
discussed magnetohydrodynamic flows in a conducting
rectangular duct witha non-conducting flow channel insert in
a constant transverse magnetic field. T. Hayat et al. [14]
obtained  the  analytic  solution  for  unsteady
magnetohydrodynamic flow in a rotating non-Newtonian
fluid through a  porous medium. M. Khan et al.
[15]presented MHD transient flows in a channel of
rectangular cross-section with porous medium. R.M.
Mohyuddin [16] discussed the Newtonian problem of an
unsteady MHD flow past an infinite oscillating porous plate
with general free stream velocity using Laplace transform
technique.

The purpose of this paper is to present analytic solutions for
the MHD flow of Maxwell fluid through porous oscillating
rectangular duct in the absence of pressure gradient and in a
rectangular duct of oscillating pressure gradient. The
expressions for the wvelocity, corresponding tangential
tensions and volume flow rate are determined by means of
double finite Fourier sine and Laplace transforms. To solve
the problem we have used the usual condition, the first time
derivative of the velocity is zero at timet =0.

2. Governing Equations

The Cauchy stress tensor, T, for an incompressible Maxwell
fluid is given by the constitutive equation

r=—pl+S and S+AS=2uD, €))

where p is the hydrostatic pressure, pu is the dynamic
viscosity, I is the identity tensor, S is the extra stress tensor,
M is the relaxation time, S is the material time derivative of
Sand D is the deformation tensor.
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Consider an incompressible Maxwell fluid at rest in a duct
of rectangular cross-section, whose sides are at x=0, x=d,
y=0and y=h. At time t=0", the duct begins to oscillate along
Z-axis.

The velocity field is of the form

[81V = V(X Y,t) = W(X, Y. DK, 2)

where k denotes the unit vector along the z-coordinate
direction. We will assume that the extra stress S depends
only on x, y and t, that is

S =5(xy.b). 3
A uniform Magnetic field J x B is applied to the
fluid, where J = o(E+V xB) is the current density, o is
the electric conductivity of the fluid, E is the electric field,
V is the velocity field, B is the total magnetic field, so that
B=B,+b, where B,is the intensity of applied magnetic
field and bis the induced magnetic field. In the present
analysis, the external electric field and the induced magnetic
field are assumed to be negligible such that the magnetic
Reynolds number is small. It is also assumed that the
magnetic field is perpendicular to the velocity field.
Thus the Lorentz force due to magnetic field becomes
IxB=-0BjV (4)

The Darcy's resistance in a Maxwell fluid satisfies
the following expression

(1+/1%)R =_“T¢v, (5)

Where ¢is the porosity of the medium, u is the dynamic
viscosity, K is the permeability of the porous medium and
R is the Darcy's resistance.

The unsteady motion of MHD fluid is governed by
the following equations

VeV =0, (6)
(14227 = (V) @
paa—\t/:—VP+Vor+JxB+R, (8)

where p is the density of fluid.

3. Flow in an oscillating rectangular duct
Substituting Egs. (1)- (5) into Eq. (8) and taking
into account the initial condition S(X,y,0)=0, we get
Syx =Sy =S,y =0, and the governing equation
W06 Y1) _ WO YD) | PWOX Y. 1)

0
(1+/15) ]

2
“ %5042 Dk )Y P wex v, 9)
P ot k

where v = £ is the kinematic viscosity.
P

We consider the following initial and boundary conditions
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W(x, y,0) =w ~0 for (xy)e(0,d)x(0,h), (10a)
w(0, y,t) =w(d, y,t) = w(x,0,t) = w(X, h,t) =U cos(awt)
for all t, (10b)
or
W(X,¥,0) = W ~0 for (xy)e(0,d)x(0h), (11a)

w(0, y,t) =w(d, y,t) = w(x,0,t) = w(X, h,t) = U sin(wt)

for all t. (11b)
We denote by u(x, y,t) the solution of problem (9), (10a),
(10b) and by v(x, y,t) the solution of problem (9), (11a),

(11b).
By introducing the function

F(x,y,t)=u(x,y,t)+iv(x,y,t), (12)
we obtain the following problem
2 2
(12 O FC D BFOLYD | OTFOYD)
ot ot x> oy?
0 Ve

—H(1+/1§)F(X,y,t)—TF(X,y,t), (13)
Foxy.0) =D o0 for (uy) e @)=, (14)
F(0,y.t) = F(d,y,t) = F(x,0,t) = F(x,h,t) =Ue'*"

forallt, (15)

2

opfy . .
where H = ﬁ is the magnetic parameter.
P

4. Calculation of the velocity field

The solution of the problem (13)-(15) will be obtained by
means of the double finite Fourier sine and Laplace
transforms.

We denote by
. mrx . N«
Fon () = 13 [0F (x, y,t)sm(T X)sin(—— y)dxdy,
for m,n=1,2,3,---
the double finite Fourier sine transform of function
F(x,y,t).
Let us take
2 2
_dmn O F OF . .
=1 IO(WjL?) sin(A, X) sin(, y)dxdy
I--D™[1=(=D"
== B g )+ EE DI ED
m Hn
x (A2 +uPH)uet, (16)
where 4, :%and Hn :nT”.

Applying the double finite Fourier sine transform to
Eq. (13) and using boundary conditions (15), we obtain
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d2F (1) dF_(t) vé
ﬂTrT‘Zr‘+(l+/1H) Z‘I’; + (VA +H + )an(t)
Am
where
A = A5 +p2,  mn=1,23,- (18)

The double finite Fourier sine
transforms F, (t) of F(t) has to satisfy the initial conditions

dF,,, (0
Foa(0)= ) 19

Applying the Laplace transform to Eq. (17) and
using Eq. (19), we obtain
[1- (D™= (D" vApU
A s—iw
x ! 5 (20)
287 +(1+ AH)s+vA,, +H +V?

=0 for (x,y)e(0,d)x(0,h).

'Emn (S) -

where F (S) =[5 Fon (t)e"*'dtis the Laplace transform of
the function F,,(t) andS is the Laplace transform variable.
We can write Eq. (20) in the following form

S L o S )
/Im/un S—lo
U[l-(=D"][1-(=D"]
ey

/152+(1+/1H)5+H+V?¢

X . 21
(sH@)(A8” + (HAH)S+Z,) @D

where
Z. =V, +H+k¢

Let us take
/132+(1+/1H)S+H+V?¢

I-mn (S) =

(sHw)(AS* HIHAH)SHZ,,)

P
= (- Ay)

14 AH
(s+—) L1+ AH +2700
1+ AH b Brn

24 Y (2/1)

x4
(s+

b

mn

21
L+2H > B o b (22)
24 21

(s+

where

A =c.+id,

mn

(23)
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c ,d

mn?> ~'mn

and b, are defined by

20°(A0* —vA,, —2(H + ))

(—Ae*+vA,, +H +Vk¢)2 + w2(1+/1H )’

(H +—¢)z +@*(1+AH)’

( Aw* +Z,, ) +o* (HAH ) 29
d - vl (1+ AH) (25)
" (- 20%+ Z,, ) H0* (HAH)
and
= J(+AH) —42Z (26)

Inverse Laplace transform of function Emn (S) given in Eq.
(22)is

L= A expiot) (1 A,) exp (-2
X{cosh(l;"; m%ﬂmsmh(%t)} . (27)

By applying the inverse Laplace transform and then inverse
Fourier sine transform to Eq. (21) and using Eq. (27), we
obtain

F(x,y,t) ——Uhexp(la)t) Z sin(A,,X)sin(z,Y)

U & [1- (=)D"= (-1
__mzn“l[ ( )1][ (=1"]

mlLln

Sin(4,X)sin(4,Y)

(H+AH )t
=)

1+ H + 2400 .
t)++b—+“"smh( 220) 1. (28)

x{ Ay, exp(iot) + (1-A,,) x exp

X{cosh( 2”;: -
or

0 1 /1 .
F(xy,t)=Uexp(iot)— 16U Z sin(4,X) sin(4,y)

dh m,n=0 /lp :uq
x{A, exp(iot) +(1- A, )x exp(W)
(cosh(Ceny FAR2A0T G By o)
22 b 22777

pq

where 2, =(2m+1)§, m :(2n+l)%, p=2m+l

and( =2n+1.

By taking t —>ocoand 1+ AH >0 in Eq. (29), we obtain
the following steady-state solution
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16U exp(iwt)

F. (X, y,t) =U exp(iowt) — ah
= sin(A, X) sin(z,Y)
X Z 2 P a Ay (30)
m,n=0 p luq

The velocity fields corresponding to both cosine
and sine oscillations of the duct obtained from Eq. (29) are

16U i sin(4,X) sin(x,Y)

u(x, y,t)=U cos(wt)—

dh m,n=0 ﬂp /uq
x{c,, cos(mt)—d , sin(wt) + exp( %)

I )(H+AH 24 d
X((l Cpq)cosh( t) (17Cpo X p2io

by
xsinh(bﬂt))} 31
24 777

and

16U i sin(4,X) sin(,Y)
dh m,n=0 /1 luq

p

vV(X,y,t)=U sin(wt) —

C,q Sin(wt)+d , cos(at)

~ep(- ) (@ 0 ( t)

dpq(1+/1Hi)—21a)(1—Cpq)o h( " t))

P
From Egs. (31) and (32), the steady-state solutions
for both
cosine and sine oscillations are

U, (X,y,t)=U cos(at)
16U i sin(A,X)sin(g, y) .

X

(32)

cos(awt)
dh m,n=0 ﬂ’p’uq ;
0 1 ﬂ/ X i
+1C61LJ z sm(ﬁ ’ )sm(#qy)dpq sin(at), (33)
m,n=0 p ,Uq
v, (%, y,)=U sin(wt)
© 1 /1 X 1
_lgﬁ Z smf1 o X) sin(z,Y) ¢, sin(at)
m,n=0 p ,qu
» sin(A X) si
LU < SR SNAY) L cosat), (34)
dh 7 4 H :
m,n= p q
while
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16U Z“’: sin(4,X) sin(,Y)
dh m,n=0 2“p 1uq

Xp( (1+ﬂ,H)t)

ut(X: yvt) ==

{(l Cpq)cosh( & t)
, (-, )(1+AH 200

P it P
. smh( 22 t) } ,

pq

(35)

16U, i sin(4,X) sin(4,y)

dh m,n=0 //Lp /uq

—e %){ d, osh( )
d,, (H+AH byz/lco(mpq ) Sinh(z_pqt)} ’

Vt(X> yat): -

(36)
Pq
are the corresponding transient components

forl+ AH >0.
5. Calculation for 7 , the tangential tension

In our problem, we have S =S, =S, =0, and

(1+2’ %)Tl (X: y:t) :ﬂwa

x 37)

da(X,Y,1)

oy

0 ow ow
(1+ﬂ, E)O-(X’ y,t) :22«(2'1 5 +7, E)
=S, ,=S,ando=3,,.

We denote by 7,.(X,Y,1), 7,.(X,y,t) the
tangential stresses for the cosine oscillations of the duct and
7, (X, ¥,1), 7,. (X, Y, 1) the tangential stresses for the sine

oscillations of the duct respectively.
If we introduce

(1425700, (38)

: (39)

where 7,

7,(X, Y,0) =7,.(X, ¥, 1) +ir, (X, Y,1), (40)
7,(X, ¥,1) =7,.(X, Y, t) +i7,,(X, ¥, 1), (41)
into the above Egs., we obtain
0 oF (X, y,t)
I+ A=), (X, y,t) = u————="=, 42
(422 )m (0 y.0 == “2)
0 OF (X, y,t
(1+/15)r2(x, y,t) = y(Ty). (43)

By applying the Laplace transform to Eqs. (42) and
(43), we obtain

1 OF(X,Y,5)
1+ 1s OX

z_-1 (X7 y7 S) = 4 (44)
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4 OF(X,Y,)

7,(X,¥,8) = 45
7,(X,Y,5) Tvis oy (45)
From Eq. (21), we obtain
= U [H=D"I[H-D"]
F(Xxy,S)=———
(%y.5) s—iw dh mZﬂ:} Al
 Sin(ZyX)sin(z, )
Ay
28+ (14 AH)s+ H + 72
X —— 5 : (46)
(s—lo)(As"HHAH)S+Z )
or
lf(xa y7 S): U - 16U i Sln(//le) Sln(ﬂq y)
sHo dh 5% Aot
As?+(1+ AH)s+ H + 29
X — 5 : (47)
(sHo)As™HIH+AH)s+Z )
where p=2m+1, q=2n+1.
Differentiating Eq. (47) w.r.t. X and y
respectively, we get
_( ,Y,8)= 16U cos(4,X) Sin(4qY)
dh m,n=0 q
As* +(1+AH)s+H Ve
x—— K_ (48
(S—lo)(As"HHAH)S+Z )
oF 16U & sin(4,X)
—(X,Y,8)=—— cos
Y (X, Y,s) ah 2, (1Y) 7
A8 +(1+AH)s+H L
(49)

smim)(AsHIFAH)SH Z,)

Using Eq. (48) in Eq. (44) and Eq. (49) in Eq. (45), we have

dh m,n=0 P q
As* +(1+AH)s+H W
X —— > , (50)
(Y HAS)ASHHAH)S+Z )
16 smM X)
7,(x.Y.8) = ;02 S(4,Y)
m,n= 0

P
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25> +(1+ AH)s+H +‘L¢

X A
(SHoYH+ASYAS* HIH+AH)S+Z )
Let us take

G(8)= — 5
(SHoYH+ASYAS HI+AH)s+Z )
— qu + Cpq _(ﬂepq+gpq)_*—i(/1qu+hpq)
S—Hiw 1+As A

1+ AH

As>+(1+AH)s+H +Vk¢

S+

X

20 -
1+AH N, o )2
(4 72y (52
242 yq(fpq=@9 )
la)bpq

x{

b
n o(l+AH )(4e +g pq)} 22

A
Aab 1+AH Y, (P
(s -(3)
Ve
+ 222 gy (€ gt ohyg)
Awb,,

+|{

bpq
2

1+AH N, (PN,
+ )—(ﬁ)

L OAH)( f )
Awb
Pq (S

where

By = ey +1qu° Co

S § and h ,
e =

Pq

:gpq+1hpq’

1> pg are given by

@ (22 (@' +H? +vA H)+1—2/1V¢)

185

(D

. (52)

(53)

Z,, - 20’2+ AH)+ @’ [HA(H + Z . —A0’ T

(H+ ‘f”)z

[Z,, — 20" 2+ AH)+ @ [HAH + 2, 20" )P

f =

o220 ( V¢+v/1 — (@ +HY)]
[, Ae’ (2+/1H)] + & [HA(HAZ  —A0® T

(54

)



186 ISSN 1013-5316; CODEN: SINTE 8

e +Vli¢/1pq +(H +Vk¢)2) +vA_]

[Z,— A" 2 AH) +& [HA(HAZ  —Aa" )] , (55)
—pA
qu - ¢ 5
k(E+/1pq Y1+ A20?)
2 (56)
h = pwA .
k(ﬁmpq )1+ A0)

Applying inverse Laplace transform to Eq (52), we obtain

G =B, exp(la)t)+c;t exp(——)
1+ AH
—exp(— 7 t)

(A8, +9,) Hi(AT, +h. ) bﬂ
x{( 7 )cosh( 21 t)
+{2’12pq(qu ©F pq)

Aab
Pq
+a)(1+/1H)(lepq+gpq)}sinh(bﬂt)
Awb 24
Pq
Ve
_{ k 2ﬂqu(e +a)hpq)
ﬂa)b
a)(1+/1H)(lqu+hpq) o
+ o, h( t))} (57)

Applying the inverse Laplace transform to Egs.
(50) and (51) and using Eq. (57), we obtain

ERRELLE PRI
m,n=0 q
. Co 1+2,H
X(qu exp(iwt) + — exp(——)—e p(— )
><<{(/Iepq + Q)+ l(ﬁ, qu + hpq) cosh(ﬂt)
A
+{2/12 pq( qu—a)g oq Hao(l+AH )(lepq+g pq)
Awb
pq
H +——2/1((v/1 +H +i’)(epq +wh,,))
+i{ k
Awb

pq
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o+ AH)(Af,, +h )
+ Tab. s nh( t)}) (58)

sm(/l X)

S cos(uyy) e

TZ(X, y’t) =- dh
m,n=0

p
C
x(qu exp(iot) +% 1+2//11H t)
><{(/uepq +0,) Hi(Af, +h) cosh(bﬂt)
A
2472 pq( qu—a)g 0 Hao(l+AH )(/lepq+g

Awb
pq

H +‘L¢—2/1((v/1pq +H +‘L¢)(epq +ahy,)

exp(— %) - exp(—

pq)

+

+i{

ﬁ,a)bpq
O+ AH)A T +h) by
+ o }}smh(ut)}). (59)

From Egs. (58) and (59), we obtain the tangential
tensions

16 2 sin( 4, Y)
7. (X, Y,t) =— ” D" cos(A,x)——=

m,n=0 q

><(epq cos(wt) — qu sin(wt) + %GXP(— %)

+ exp(— ! +/ZH t) {—uepqﬂ—Jrgpq)cosh(bﬂt)

22(VA, +H + ¢)(qu—wg )
ﬂua)bpq

L ol AH)(ey + )
/Ia)b

+

sinh(%‘it)} ), (60)

© s1n(/1px)
Z OS(,LIq y)

m,n=0 p

TZC(X, yat) -

><(epq cos(awt) — qu sin(awt) + %exp(— %)

+exp (— ! ;iH t) {— (;Lepq;g ) cosh (Z%t)

2A(VAy, +H + Vk¢)( fy =00 )
/Ia)bpq

o(1+AH)(Aey, +95), - by
+ — }51nh(2/1t)}), (61)

P

+
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for cosine and

16 < sin(44,Y)
TIS(X, y:t)z ﬂ z (ﬂ’px)—q

m,n=0 q
h t
X (epq sin(at) + f, cos(wt) + %exp(— —)

IHLH ){ A Pt cosh( P t)

+exp (—

H +k¢—2/1(v/1 +H+ ¢)(epq +wh,,)

+
{ Aob

o(l+ AH)Af, +h) bﬂ
+ /1a)bpq } smh( Y t) } ),
16,0 &
o D" cos(u,Y)

m,n=0 p

(62)

sm(ﬂ, X)

Tys (X7 yat) =

h
><(epq sin(wt) + f , cos(awt) + % exp(—%)

+eXp(—1+/1H ){ ﬂf +h

b
h(—2t
1 cos (2/1 )
H+—¢—2/1(vi +H+—¢)(e +oh )
k pq k pq pq
Aob

o+ AH)AT, +h ) bﬂ
+ Fpn }smh( Y t)} )

pq
for sine oscillations of rectangular duct for Maxwell fluid.

+

(63)

6. Calculation of the volume flow rate

The volume flow rate for cosine oscillations of the
rectangular duct is given by

d eh dxd
Q)= ], ucxy,txdy.
Inserting U(X, X,1) from Eq. (31) into the above relation, we

find the volume flow rate

64U & 1
Q. (t) =Uhd cos(at) -
ah 2 o)

x{c oq COs(@t)—d , sin(ot) + exp(— %)
b
x{(1-¢,,) cosh(z—’jt)

b

Pq
for cosine oscillations of the rectangular duct for Maxwell
fluid.
Similarly, we obtain the volume flow rate

ISSN 1013-5316; CODEN: SINTE 8 187

64U & 1
Q,(t) =Uhd sin(awt) —
dh m,Zn;O (A tg)°

><{Cpq sin(wt)+d , cos(awt)— exp(— %)

x{d cosh(bﬂt)

1+AH )2 lw(l—<
nLERE (220} (@9
bpq
for the sine oscillations of the rectangular duct for Maxwell

fluid.

7. Flow through a rectangular duct oscillating due to
pressure gradient

Consider a Maxwell fluid at rest in a duct of
rectangular  cross-section =~ whose  sides are  at

X=0,Xx=d,y=0andy=h. At t=0"an
oscillating pressure gradient is applied to the fluid in the z-
direction. The governing equations, initial and boundary

conditions for this problem corresponding to Egs. (13)- (15)
become

time

0., oP

9, 0F(X.y,t) _ 1(1 /1_)_

(+ /1—) P

(azF(x AV azF(x Y, t))
ax oy’

—H(1+i—)F(X y,t)— ¢F(X y,t), (66)

F(x,,0) = —aF(’é’ty’ 0
for (x,y) €(0,d)x(0,h), (67)
F(0,y,t)=F(d, y,t)=F (x,0,0}=F (x,h,t) =0 V' t. (68)

Let us assume that at timet =0"
the form

P_ —pQ exp(iat),
0z

where Q is amplitude and @ is the frequency of oscillation.
Using Eq. (69) in Eq. (66), we obtain

=0

, a pressure gradient is of

(69)

1+2< )a':(x y’t)—Q(1+/1§) exp(ict)
+V(62F(x;y,t) s 62F(x; y,t))
OX oy

0
HI+ADFXYD-2LFo0yD.  (10)
Employing the same methodology as in the previous case,
we find the corresponding expressions of the velocity field
under the form
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16Q & Z sin(4,X) sin(z,Y) for |+ AH >0.

Adopting a similar procedure as before, the expressions for

u(x, y,t)=Qcos(wt)

dh e A P Hq the tangential tensions are given by
. 1+AH)t i
x{apq cos(at)y-p,, sm(a)t)+exp(— (2—/1)) 7%, Y,t) = 16,UQ 3" cos(2,X) sin(4,Y)
m,n=0 q
_ +1
{(1-a, )cosh( ) X((qu N ié' ) exp (iat) + gpq ; Y exp (_%)
(-a,,)(+AH )+2/1a)ﬂpq b
+ h(=2t)fs, (71 1+ AH
» sih(CEOF 5, (7D exp( 2)
and .
AY o +EL)HI(AS,, + b
_ 16Q & sin(4,x) sin(,Y) x{—( Voa +op) T1(A0y l//pq)cosh(it)
V(X, y,t)=Qsin(@t)—=>" : A 2
dh = 4, Hq +((;Lypq+§pq)(1—4/1+/1H(1—2/1))
: AH)t
x{apq sin(@t) +/5,, cos(awt) —exp(— %) Ab bq
27120y ,) . P,
x(ﬂpq cosh( ) i Ab )Smh(Zﬂ t)
, P (AH )—2,1w(1—apq) sinh( by, )} qy 4 (A8t v o )(1-4442H (1-22)) + 22w
b,, ' b,
where b
Dy = g+ a3 <smGE0H, )
16 s1n A X
O and /an are given by B0 Y.0=- IUQmEOC ;vpp )
Ao*H+Z E +iy t
O™ - - 5 (74) i i P ke -
(—Aw™+Z,, ) +a’ (HAH Y (7, +15,) exp iat) + === exp(—)
1+ AH
a)(l + A0 - Av(A,, + f)) +ExXp (_ t)
ﬂ'“”z(—/mMK P+’ (1+AH)* 2 (Ay +§ )+i(A8,, + ) b
mn % {_ pq pq ~ Pq pq Cosh(it)
By taking t — 0 in Egs. (71) and (72), we obtain (Ay oq + & bq J1-42A+AH (1-21))
the following transient components + ( 1b
Ut(X: y:t) = 16Q Z Sln(i X) Sln(luq y) 2 pk;]
dh S A4, 4 G 20220V ) G (2 )
(1+ AH)t b A 24
x{exp (——)((l—apq)cosh(ﬂt) "
24 22 (A6, +w ) (1-42+AH (1-22)) 2270
(., )(HAH ) 240 b +i—
" i sinh(ﬂt))}, (76) b
Pq
vyt =160 5 sin(4,X) sin(z,y) ><smh( t)}) (79)
t s Yo
dh m,n=0 lp Hy where
{ (_ (1+/1H)t)(_ sh( ) qu =7 +i§pq’ qu prq +il//pqa (80)
Fra© 7, 0 y ,é‘pq andy are given by
H+AH) — 21—
By )b o(l-a,,) sinh(z—‘jt))}, 77

Pq
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/1a)2(1+/1a)2

Pq - 2 2 2 2812
[- A0’ 2+AH WZ , [+’ [HA(HAZ —A0”)]
0*(22(H?* + 20%)) + 2, (2 ,,-1-220?)

[-20* (2+AH W Z , P+’ [HA(H+Z —Aw?)]

~2v(4, +f)) + @

I

w(ﬂzwz(mmm%z(l ~H-0%)))

S =
W [0 (2HAH WZ o [HAHAZ —Aa™)]
a(l- /1qu)

—.(82)
sy (2+AH WZ , PHa [HA(HAZ A0

/I(l—v/ipqn%za)z—%)

oA’
qu = P > V/P“:W' (83)
v(fipq)(1+/12a)2) tAw
From Egs. (78) and (79), we obtain the tangential tensions
16uQ & sin(44,Y)
706 YD == =125 D cos(A, 0 ——=
dh 4

q

x (7pq cos(at) — &, sin(awt) + %exp(— %)

b
p(_1+/1H t) {(/qu +&0) cosh(ﬁt)

+ ex
2 )
(A7 pq +Epq)(1=4A+AH (1-22))
+(
Ab
Pq
222120y )N . . D,
+ b )smh(m t)}). (84)
16 A X
Ty (X, Y, 1) =~ dﬁQ Z cos (ﬂqY)&
m,n=0

P

X (;/pq cos(awt) -4, sin(wt) + %exp(—%)

1+ AH \ (A + &) D
+ - t m_-A h(—=-t
exp( 1 ){ J) COoS (2/1 )
+((Mpq+§pq)(1—4/1+/1H (1-21))
Ab
pa
22°(1-20y ) b
inh( —£-t 85
corresponding to cosine and
16 sin(4,Y)
Fu (D=1 S cos(z,0 2L
m,n=0 q
v
(7pq sin(@t) + 6, cos(wt) +—= 2 exp(——)

= (81)
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b
+ exp(— t+AH t) { (/wpq; Vo) cosh(ﬁt)

L(A0 v o (14 4+2H (1:22) J12 220

b
h(220)}) 56
X Sin H ’ ( )
16 sm(/l X)
(6 YD =— T2 3 cos(ay)
m,n=0 p
(75 si
+AH (A8 HW o) b
- t)q——P4 " P ogh( =t
+exp( > ){ L cos (2/1 )
L A0+ v, (H4AHAH (1220) 12220
b
' b
><smh(22 t)}) (87)

sine oscillations due to oscillating pressure gradient.

The volume flow rates for cosine and sine
oscillations induced by oscillating pressure gradient are
given by

Q. (t) =Qhd cos(mt) - Z

mnO

(_ (l+/1 H )t)

X {apq cos(at) —f3,, sin(wt) + exp 1

x((l —ay,) cosh(zizt)

Ly, )(1+sz )+ 220f (Zﬂ .

pq

Q,(t) =Qhd sin(at) — 64Q Z

mnO )

x{apq sin(at) +f3,, cos(at) — exp(— (1+j/|: )t)

(88)

b

x(ﬂpq cosh(ﬁt)

N ﬂpq (+AH )—2/1a)(1—apq)
b

Pq

b
sinh(z—p/;t))} . (89)

8- Results and discussion

This section displays the graphical illustration of the velocity
fields, the corresponding tangential tensions and volume
flow rate for the flow discussed above. Figs. 1-3 are
sketched to notice the effect of material parameters on the
velocity profile for sine oscillations of Maxwell induced by
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oscillating pressure gradient. In Fig. 1, transient velocity
profile is plotted against time for various values of relaxation

time A . It is seen that the amplitude of oscillation of velocity
increases and the required time to reach the steady state also
increases as A increases. The decay of transient velocity in
time is plotted in Fig. 2 for different values of angular
frequency @ . From this Fig., it is concluded that the
amplitude of oscillation as well as the time to reach the
steady increases for increasing @ . From Fig. 3, it is seen that
the amplitude of oscillation increases with increase inv .
Now we intent to investigate the magnetic and porosity
effects on the velocity, tangential tension and volume flow
rate for the two flow problems. In Figs. 4-9 panel (a) shows
the effect of magnetic parameter and panel (b) the effect of
porosity of medium. In Fig. 4, we plotted transient velocity
profiles for sine oscillations of rectangular duct against time.
It predicts that the transient velocity decreases with increase
in the magnetic parameter and porosity of medium and the
required time to reach the steady state also decreases. Fig. 5
shows that magnetic parameter and porosity of medium
decrease the transient velocity profiles for the case of sine
oscillations induced by oscillating pressure gradient.

From Figs. 6 and 7, it is seen that the volume flow rate
decreases with the increase of magnetic parameter and
porosity of medium for the both flow problems. Figs. 8 and
9 are sketched to demonstrate the velocity changes with the
magnetic parameter and porosity of medium for sine
oscillations of the duct and sine oscillations induced by
oscillating pressure gradient. It is seen that amplitude of
oscillation of velocity in magnitude decreases with the
increase of these parameters for the both problems but
periodicity remains the same.

The fluctuations of the tangential tensions for

oscillations of rectangular duct, 7, , verses time are shown

sine

in Figs. 10 and 11 for H and ¢ respectively. From Fig.
10(a) it is noted that the tangential tension, 7| , changes its

monotony with respect to H for small time. For large time,
when the flow reaches the steady state amplitude of
oscillation  of increases  with

tangential ~ tension, 7,

S

increasing H as depicted in Fig. 10(b). Similarly, Fig. 11
shows that the effect of ¢ on the tangential tension, 7|, is

the same as that ofH. The effect of Hand@on the

tangential tension, 7,,, for the case of sine oscillations

induced by oscillating pressure gradient is shown in Fig. 12
and it is seen that there is no significant effect initially and

later for any time tangential tension, 7, increases with the

increase of these parameters.
9- CONCLUSIONS

Unsteady flow of Maxwell fluid through porous rectangular
duct in the presence of magnetic field has been studied for
two flow situations by means of the double finite Fourier
sine and Laplace transforms. The relaxation time, frequency
of oscillation and kinematic viscosity increase the amplitude

Sci.Int.(Lahore),25(2),181-194,2013

of oscillation of velocity. The transient velocity profile and
the time to reach the steady state decrease with the increase
of magnetic field strength and porosity of medium. Volume
flow rate decreases while the tangential tension increases
with the increase of Handg . In the special cases, we can

obtain the solutions corresponding to the Maxwell and
Newtonian fluids. We can obtain the corresponding
solutions  for  Maxwell  fluid by  substituting

H=0and¢=0, for Maxwell fluid in the presence of
magnetic field by substituting ¢ = 0 and for Newtonian fluid

by substitutingH =0, ¢=0and 1 —0.
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-0.03

Fig. 1 Transient velocity profiles of sine oscillations given in
Eq. (36) for Maxwell fluid induced by oscillating pressure
gradient for different values of . Other parameters and
values are taken as U=0.1, d=1 h=2 x=05,
y=1,k=001, =0, M =0, ®=0.5and v=0.2
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0.1

Fig. 2 Transient velocity profiles of sine oscillations given in
Eq. (36) for Maxwell fluid induced by oscillating pressure
gradient for different values of @ . Other parameters and
values are taken as
U=0.1d=1,h=2 x=0.5,y=1,

k=00LM =0, $=0, A=2and v=0.2
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Fig. 3 Transient velocity profiles of sine oscillations given
in Eq. (36) for Maxwell fluid induced by oscillating

pressure gradient for different values of v . Other
parameters and values are taken
asU=0.1,d=1,h=2,x=05, y=1, k=00l

M=0, =0, A=3andw=0.5
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Fig. 4 Transient velocity profiles of sine oscillations given in
Eq. (36) for Maxwell fluid in oscillating rectangular duct for
different values of (a) magnetic parameter and (b) porosity
of medium. Other parameters and values are taken as
U=1l,d=1, h=2, x=05, y=1, k=001, 1=3

@w=0.5andv =0.1 ’
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Fig. 5 Transient velocity profiles of sine oscillations
induced by oscillating pressure gradient given in Eq. (77)
for different values of (a) magnetic parameter and (b)
porosity of medium. Other parameters and values are taken
as  U=01, =1, h=2, x=05, y=lI,
k=0.1,0=0.5 and v=0.1
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Fig. 6 Volume flow rate of sine oscillations given in Eq.
(65) for Maxwell fluid in oscillating rectangular duct for
different values of (a) magnetic parameter and (b) porosity
parameter. Other parameters and values are taken as
U=1,d=1, h=2, x=0.1, y=0.2, k=01,
=05 ©=0.5 and v=0.1,
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Fig. 7 Volume flow rate of sine oscillations induced by
oscillating pressure gradient given in Eq. (89) for different
values of (a) magnetic parameter and (b) porosity of
medium. Other parameters and values are taken as
U=2,d=1, h=2, x=0.5, y=05 k=0.1,
A=3w=0.5 and v=0.1
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Fig. 8 Velocity profiles of sine oscillations of oscillating
rectangular duct given in Eq. (32) for Maxwell fluid for
different values of (a) magnetic parameter and (b) porosity
of medium. Other parameters and values are taken
asU=1, d=1, h=2, x=0.1, y=02,
k=01,2=05, ©=05and v=0.1,
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Fig. 9 Velocity profiles of sine oscillations induced by
oscillating pressure gradient given in Eq. (72) for different
values of (a) magnetic parameter and (b) porosity of
medium. Other parameters and values are taken as
U=2,d=1, h=2, x=05, y=05, k=0.1,
A=3 =05 and v=0.1
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Fig. 10 Tangential tensions 7, of sine oscillations of
rectangular duct (Eq. (62)) for Maxwell fluid for different
values of H. Other parameters and values are taken
asU=1, d=1, h=2, x=05, y=05,
k=0.1,A=3 @=0.5 and v=0.0012
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Fig. 11 Tangential tensions 7, of sine oscillations of
rectangular duct (Eq. (62)) for Maxwell fluid for different
values of@. Other parameters and values are taken as
U=l, =1, h=2, x=05, y=05,
k=0.1,1=3 ®=0.5 and v=0.0012
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Fig. 12 Tangential tensions Z1s of sine oscillations induced
by oscillating pressure gradient (Eq. (86)) for different

values of H and®- Other parameters and values are taken

U=l d=1_ h=2  x=05  y_q5
k=0.01 2=05 ©=05 4q v=00012
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